If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(n^2+n)/2=5050
We move all terms to the left:
(n^2+n)/2-(5050)=0
We multiply all the terms by the denominator
(n^2+n)-5050*2=0
We add all the numbers together, and all the variables
(n^2+n)-10100=0
We get rid of parentheses
n^2+n-10100=0
a = 1; b = 1; c = -10100;
Δ = b2-4ac
Δ = 12-4·1·(-10100)
Δ = 40401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40401}=201$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-201}{2*1}=\frac{-202}{2} =-101 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+201}{2*1}=\frac{200}{2} =100 $
| (n^2+n)/2=5051 | | 4m-3=2m+27 | | x/7=3.1 | | 3y+6=36-3y | | (n^2+n)/2=1225 | | 3r=60-r | | -18b-10=-14 | | (n^2+n)/2=130000 | | (n^2+n)/2=140000 | | (n^2+n)/2=105 | | (n^2+n)/2=66 | | 2n=140 | | 5(k-12)=9*10 | | 8(2b3)=16b24 | | 8+-3t=2 | | 2(q+11)=5*6 | | 2(t+5)=7*10 | | 2(k-11)=6*7 | | 6(k-5)=18*11 | | 2(r+2)=8*3 | | 3(x-9)=2*12 | | x+0.7=1.2 | | 3/4-5=4x(1/8) | | -4x+18-9x=6-7x | | 2+7zz=4 | | |3u-6|=3 | | 2x+93.5=180 | | p=8.5 | | -8x+6=24x+34 | | P=8.0h | | P=(0.125)h | | x-8.1=-7.2 |